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A time domain nodal discontinuous Galerkin method is used to solve Maxwell equations and simulate reflectometry responses of
soft faults. In this paper shielding defects of coaxial cables or other shielded lines are considered. Hexahedral high order elements
are used for meshing. They allow to avoid bulky meshes compared to tetrahedral elements. A gaussian pulse is injected on the faulty
line. The reflectogram of the line containing the chafing soft defect is obtained and parameters such as the reflection coefficient or
the characteristic impedance of the fault are computed. These numerical values are compared to those obtained in experimental
investigations. The experimental impedances estimated using a classical transmission matrix method are in very good agreement
with those obtained by three-dimensional modeling.
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I. INTRODUCTION

DETECTING and repairing partial and small faults in

electrical wires before they become severe is a crucial

issue in aerospace and automotive industries [1]. The analysis

of electrical wires are performed by reflectometry [2]. This

method consists in determining the characteristics of the wires

from the measurement of the reflection pattern generated

by high frequency electrical signal at each impedance

discontinuities. The hard faults have been well studied and

are efficiently characterized by traditional reflectometry

techniques. Soft faults have been far less studied. They are

defined as very small, not necessary localized, change of

the wire characteristic impedance. The generated reflections

are very small and hard to detect. Suitable methods for the

recognition of soft fault signatures must be developed in order

to characterize their type and prevently repair the defective

harness before facing potentially severe safety issues. As a

matter of fact, a soft fault such as a chafed wire may either

cause dangerous arcing problems or evolve toward a hard

fault causing partial or total malfunctioning of the system.

Numerical modeling of wiring system generally consist

in combining two different approaches. Firstly, the voltage

potential function of the faulty section is computed by solving

a static 2D cross-sectional model based on Poisson equation.

The finite element method or the finite difference method

are widely used to perform calculations. After deducing

electric field, the Gauss theorem allows to determine the

cross section parameters such as, the resistance R, the

inductance L, the capacitance C, the conductance G and the

characteristic impedance Z . The return loss parameter S11 of

the fault is then obtained by introducing these cross section

parameters in a longitudinally model which can be based

on different approaches. The transmission matrix method

uses the impedance Z and consists in computing matrices to

evaluate the linear networks for the simulation of the system’s

impulse response. The telegrapher’s equations use the RLCG

parameters in two coupled equations of unknown the voltage

V and the current I . This one-dimensional system is often

solved by the finite difference method, both in frequency

domain or in time domain, and allows to describe the voltage

and the current at any point along the wire to obtain the

reflectometry response. Unfortunately this modeling approach

do not take into account the three-dimensional aspect of wave

propagating in the wire.

In this paper a three-dimensional model of a coaxial cable

with soft fault is presented. The presented work consists

in solving time domain Maxwell’s equations that describe

the propagation phenomenon, and computes different param-

eters such as the reflection coefficient or the characteris-

tic impedance of the faulty section. A nodal Discontinuous

Galerkin method is adopted for the spatial discretization. This

kind of approach has been recently introduced in the modeling

of electromagnetic compatibility problems. Its discontinuous

aspect allows to easily discretize objects of different sizes or

shapes and provides a better consideration of discontinuous

properties. These kind of methods are well adapted for parallel

computing because the generated matrices are block diagonals.

In this work, we adopt hexahedral spatial elements because

they lead to less bulky meshes than with tetrahedral ones, and

we consider high order elements in order to reduce numerical

dispersion error. The time domain reflectogram obtained is

treated through a fast fourrier transform algorithm to compute

the frequency signature of the fault. The obtained values are

compared to those issued from experimental measurements.

The experimental impedances estimated using a classical

transmission matrix method are then compared to the ones

obtained by three dimensional modeling



II. DISCONTINUOUS GALERKIN METHOD

Let E, H and J , respectively, the electric field and the

magnetic field and the current density. Time domain Maxwell’s

equations form a system (1) of 6 unknowns that are compo-

nents of E and H :
{

ǫ∂tE −∇×H = −J

µ∂tH +∇× E = 0
(1)

where ǫ is the permittivity of the medium and µ its perme-

ability and J is the current density. In a conductive medium,

J = σE, with σ the conductivity.

The Discontinuous Galerkin methods are introduced for solv-

ing the conservative form of partial differential equations. This

method consists in discretizing the variational formulation of

(1) on each mesh element T of the domain Ω = ∪T .
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where φ and ψ are test functions. This approach is based on a

classical finite element method on each T and flux expressions

(n × H)num and (n × E)num are defined at the interfaces

to connect the neighboring elements. The mapping technique

is perfomed to increase the efficiency of the finite element

method [3]. Different formulations of the flux expressions

exist [4]. These following expressions resulting in different

numerical schemes are implemented. For α = 0, centred

fluxes are obtained and numerical schemes are dispersive. For

α = 1, upwind fluxes are obtained and numerical schemes are

dissipative.
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where [u] =
u+ − u−

2
and {u} =

u+ + u−

2
. The subscript

”-” denotes the values for filds in the current element, while

”+” is for the adjacent element.

III. NUMERICAL EXAMPLE

The chafing soft fault considered in this part is a small

snatching of the dielectric health of length lf = 50mm and

depth hf = 0.9mm as show in Fig.2. This kind of defect is

very observed when a cable is not in its nominal position any-

more and has moved against an edge. It is located in the middle

of a damaged coaxial RG58 cable of length Lc = 25cm.

The woven copper shield is of radius Re = 1.475mm, the

copper core radius is of radius Rin = 0.425mm. The inner

dielectric insulator is of relative permitivity ǫr = 2.25. Note

that the outer plastic sheath is not modeled. The simulation

consists in injecting an incident gaussian pulse in the cable.

Hexahedral third order elements are used for meshing. The

time integration is performed with a four stages explicit

Runge-Kutta method. The reflected fields are recorded on a

reflectogram. The treatment of this response allow to compute

the parameters such as the characteristic impedance or the

reflection coefficient of the soft fault. In a second time, the

reflection coefficient of the line is experimentally measured

using a Vector Network Analyzer and its impulse response

computed. By adjusting a classical transmission matrix model,

the cross sectionnal impedance of the defect is obtained.

The results obtained by the two methods are in very good

agreement and will be presented in an extended version of

this paper.

Fig. 1. Damaged coaxial cable of type dielectric sheath and its modeling.
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Fig. 2. The simulated reflectometry response of the chafing soft fault.
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